Ecological Interface Design for the Flight Deck

The World beyond the Glass

SAE Workshop, Tahoe, March 2006

René van Paassen,

March 2, 2006

″UDelft

1

Delft University of Technology

Topics I hope to cover

- Short Introduction to Control and Simulation, Aerospace Engineering, TUDelft
- Aspects in Flight Deck Interface Design
- Cognitive Systems Engineering/ Ecological Interface Design
- Work Domain Analysis
- Some Examples
- Closed loops and the match to flight skills
- Conclusions

March 2, 2006

Control and Simulation – AE - TUDelft

people in the HMS cluster

prof. dr Bob Mulder dr ir René van Paassen dr ir Max Mulder ir Xander in 't Veld	division head associate professor associate professor division test pilot		
		hoise abatement procedures	
ir Frizo Vormer ir Clark Borst ir Matthijs Amelink ir Mung Lam ir Stijn van Dam ir Joost de Winter ir Herman Damveld ir Peter Zaal	PhD candidate PhD candidate PhD candidate PhD candidate PhD candidate PhD candidate PhD candidate PhD candidate PhD candidate	flexible arrival management CSE/EID for TAWS/SVS CSE of UAV UAV haptic interface CSE/EID for VTM Virtual driving assistant H-Q of flexible aircraft Simulator fidelity	

Approximately 25 MSc graduate students each year

TUDelft

active knowledge base

The Flight Deck is:

- An "open" system (Vicente)
 - extensive and complex interaction with the environment
- The airborne office
- A workplace for cognitive (team)work

Levels in Interface Design

- Illumination, readability, colors, symbols
- Integrated displays, configural displays, emergent features, principle of moving part
- Support for cognitive work ->Cognitive Systems Engineering

″UDelft

7

Is there a display format that helps pilots with their (cognitive) tasks?

March 2, 2006

Human Capabilities Direct Perception – Gibson

affording

perception-action coupling

specifying

March 2, 2006

FIG.8.6. The optic flow field for a pilot leading an acroptane. From Gitsz (1950): Conyright (5) 1950 by Houghton Mifflin Company, linston $\cup (4 \le 1)$ permission.

Joint Cognitive Systems

- Aircraft + crew = system with cognitive tasks
- Joint cognition ≠ who does what (Fitts' list) rather: cognitive transparency
- Display supports cognition: Ecological Interface Design

-> Cognitive Systems Engineering

Ecological Interface Design

- Basic idea + name: enable "Gibson" direct perception
- Elaboration:
 - Work Domain Analysis Abstraction Hierarchy
 - Control task analysis Decision Ladders
 - Strategies, Social Organization, Worker capacity
- The "design"

Work Domain Analysis

- Map the "terrain" of a specific work situation
- Identify the constraints

EID Archetype DURESS

- Double feedwater system
- Laboratory task

Abstraction hierarchy

14

March 2, 2006

Driving, Flying, Sailing, vs. Process plants

- Extension of natural ecological perception
- Transport is the issue
- Interaction complex environment
- Control

- Build new ecology
- Transported stuff is (nearly) anonymous
- Limited (known) number of variables
- Functionality creation and selection

Additional

- The "intentional domain" issues, are man-made laws+conventions different from the physical ones?
- Difference in nature of disturbances, probability models.

Can we get "classical" EID in an aircraft (car, ship)

- Already have Ecological Perception -> Enhance, not substitute
- Time scale is different -> not always opportunity to visually explore an interface
- Controls are not co-located with the interface
- Interaction is already multi-modal -> process control EID could learn from us there
- We cannot measure everything in the outside world -> rely on humans to read signs etc.

Ecological Support Interface Design

- Analyze work domain (AH)
- Analyze control tasks (cybernetics)
- Identify what affordances are not sufficiently specified
- Enhance

Example problem: Avoiding aircraft

Waypoint Approximation

Air

Locomotion

Actual & Planned Position Approximation

Traveller

X

21

Environment

Intruder Aircraft

Collision/Avoidance

History of approaches

- ASAS, pASAS, various support tools
- Modified Voltage Potential
- NLR, Eurocontrol, FAA, others

ASAS (NLR)

Calculation CPA

CPA < look-ahead time AND distance < CPA dist = conflict

23

Problems

- Conflict location moves when maneuvering
- Affordance hit is clear, affordance avoidance not
- Conflicts triggered by maneuvers -> engineering approach answer pASAS

Our answer rooted in Functional Modeling and EID/Cognitive Systems Engineering

24

Abstraction Hierarchy conflict avoidance

functional purpose

abstract function

generalized function production safety

absolute relative (loco-)motion motion

path control flight

March 2, 2006

Solving some of these issues took us several Msc students

- Identification of abstract functions
- Chosen representation of the "world+aircraft"

John Flach's point: What you express at the AF level describes the "state" of the system, and you should be able to check goal achievement on this basis.

René's point: The selection of your state variables determines how you can shape your representation into an interface

Choosing state representation pqr ϕ θ ψ $, \ \underline{\dot{\mathbf{x}}} = f(x, u, t)$ $\underline{\mathbf{x}} =$ \boldsymbol{u} vwxy \mathcal{Z}

TUDelft

State Vector Envelope

TUDelft

Combining for different intruders

SVE, what can you see

- Other ships, protected zones of other ships
- Surrounding airspace
- Destination waypoints/headings
- "Shape" of surrounding airspace (function morphology), in terms of heading+speed

Vertical path+speed control

- Common task in flying, following speed+altitude profile
- Limited focus, on part of flying task
- AH for aircraft basic motions

Aircraft dynamics+kinematics

- Flight path determines potential energy rate
- Throttle -> (mainly) total energy rate
- Stick -> (mainly) pitch rotation, indirectly flight path angle

LEVELS OF ABSTRACTION	Functional purpose	fly trajectory:	follow speed follow altitud	profile le profile	
	Abstract function	law of conservation of energy	altitude = potential energy speed = kinetic energy kinetic + potential = total energy		
	Generalized function	energy awareness:	energ	y management:	
	Physical function	controlling the state variables	cause-effect of control for a generic aircraft		
	Physical form	aircraft-specific comp	ponents and configuration		

Causality and Block Diagrams

- Cannot follow the block diagram and reason
- Translates into constraints for the system
- Control actions are a result from properties of the actor (human) and the system (car)

CSE/EID alone is not enough: Pilot in closed loop control

But this only applies to laboratory tasks and fliying with a flight director!

Pilot in real-world control

No 4, the EID display, must be compatible with 1, environment cues, and show the workspace in which 2, the pilot's purpose, is realized, under control of 3.

production joy comfort^{efficiency}

locomotion

publication of travel travel space

roadway fixed boundaries

moving objects

43

March 2, 2006

safety

Free-path decelerating approaches Emergency landing guidance system Terrain information in Synthetic Vision

Vertical ASAS with energy/altitude trade-ofference

3000

2000

1000

EDCE

Applications for Vessel Traffic Services (maritime) ightarrow

Ecological match for cybernetics of airplane control

- Compatibility between pilot goals, direct perception from environment, human control output and "display" (haptic, visual, auditory etc.)
- When dealing with a closed, high bandwidth loop with time delays, need control theoretic/cybernetic analyses
- Role of ecological approach is in discovering what the environment affords to the vehicle/driver, and what is under-specified
- Inner + outer loops, part of the faster dynamics can be handled by the human

EID is still "design", Depends on creativity designer

 Not any AH hierarchy representation is good enough, search for the "meaningful physics"

Situated Cognition – Hutchins

recognize	encode	
orient align	Cheode	align
speak read-off	draw	compare
March 2, 2006		49
		T UDelft

Implications for design

- Internal representation?
- Memory, reasoning?
- Models like IDA?

Engineering units, comparison to automatic controllers, reasoning programs

