Aerospace Control and Guidance Systems Committee

Announcements


You must first log in to access prior meeting presentations, register for a meeting, or nominate some for the Ward Award.


If you do not have a login account, or cannot remember the email address associated with your account, please click on the Application Form link below.

 
 

Login

 

E-mail: 

 

Password: 


Forgot your password?

Application Form


 

Site Search

Search our site:
 
 

Upcoming Events


Register for Meeting 132
(please log in first)

 
 

Photos


Meeting Highlights New!

Subcommittee S

 
 

Prior Meetings

Abstracts may be viewed by anyone. Presentations are only available to active members who have logged in.

Meeting 132
(coming soon)

Meeting 131

Meeting 130

Meeting 129

Meeting 128

Meeting 127

Meeting 126

Meeting 125

Meeting 124

Meeting 123

Meeting 122

Meeting 121

Meeting 120

Meeting 119

Meeting 118

Meeting 117

Meeting 116

Meeting 115

Meeting 114

Meeting 113

Meeting 112

Meeting 111

Meeting 110

Meeting 109

Meeting 108

Meeting 107

Meeting 106

Meeting 105

Meeting 104

Meeting 103

Meeting 102

Meeting 101

Meeting 100

Meeting 99

Meeting 98

Meeting 97

Meeting 96

Meeting 95

Meeting 94

Meeting 93

Meeting 92

 
HomeWard Memorial AwardPlanning Advisory BoardDownloadsConstitution and By-LawsAboutHistoryContact Us

  ← Return to agenda

MeetingACGS Committee Meeting 114 - Cleveland, Ohio - October 2014
Agenda Location6 SUBCOMMITTEE E – FLIGHT, PROPULSION, AND AUTONOMOUS VEHICLE CONTROL SYSTEMS
6.2 Autonomy Research for Civil Aviation – NRC Panel Report
TitleAutonomy Research for Civil Aviation – NRC Panel Report
PresenterJohn-Paul Clarke
AffiliationGeorgia Tech
Available Downloads*presentation
*Downloads are available to members who are logged in and either Active or attended this meeting.
AbstractJohn-Paul Clarke, johnpaul@gatech.edu
Co-Chair, NRC Committee on Autonomy Research for Civil Aviation

Abstract*
The development and application of increasingly autonomous (IA) systems for civil aviation are proceeding at an accelerating pace, driven by the expectation that such systems will return significant benefits in terms of safety, reliability, efficiency, affordability, and/or previously unattainable mission capabilities. IA systems, characterized by their ability to perform more complex mission-related tasks with substantially less human intervention for more extended periods of time, sometimes at remote distances, are being envisioned for aircraft and for air traffic management (ATM) and other ground-based elements of the National Airspace System (NAS). This vision and the associated technological developments have been spurred in large part by the convergence of the increased availability of low-cost, highly capable computing systems; sensor technologies; digital communications systems; precise position, navigation, and timing information (e.g., from the Global Positioning System (GPS)); and open-source hardware and software.
These technology enablers, coupled with expanded use of IA systems in military operations and the emergence of an active and growing community of hobbyists that is developing and operating small unmanned aircraft systems (UAS), provide fertile ground for innovation and entrepreneurship. The burgeoning industrial sector devoted to the design, manufacture, and sales of IA systems is indicative of the perceived economic opportunities that will arise. In short, civil aviation is on the threshold of potentially revolutionary changes in aviation capabilities and operations associated with IA systems. These systems, however, pose serious unanswered questions about how to safely integrate these revolutionary technological advances into a well-established, safe, and efficiently functioning NAS governed by operating rules that can only be changed after extensive deliberation and consensus. In addition, the potential benefits that could accrue from the introduction of advanced IA systems in civil aviation, the associated costs, and the unintended consequences that are likely to arise will not fall on all stakeholders equally. This report suggests major elements of a national research agenda for autonomy in civil aviation that would inform and support the orderly implementation of IA systems in U.S. civil aviation. The scope of this study does not include organizational recommendations.

*This abstract is extracted from the Summary of the NRC Report.



Copyright © 2024 | Question? webmaster@acgsc.org