Aerospace Control and Guidance Systems Committee

Announcements


You must first log in to access prior meeting presentations, register for a meeting, or nominate some for the Ward Award.


If you do not have a login account, or cannot remember the email address associated with your account, please click on the Application Form link below.

 
 

Login

 

E-mail: 

 

Password: 


Forgot your password?

Application Form


 

Site Search

Search our site:
 
 

Upcoming Events


Register for Meeting 132
(please log in first)

 
 

Photos


Meeting Highlights New!

Subcommittee S

 
 

Prior Meetings

Abstracts may be viewed by anyone. Presentations are only available to active members who have logged in.

Meeting 132
(coming soon)

Meeting 131

Meeting 130

Meeting 129

Meeting 128

Meeting 127

Meeting 126

Meeting 125

Meeting 124

Meeting 123

Meeting 122

Meeting 121

Meeting 120

Meeting 119

Meeting 118

Meeting 117

Meeting 116

Meeting 115

Meeting 114

Meeting 113

Meeting 112

Meeting 111

Meeting 110

Meeting 109

Meeting 108

Meeting 107

Meeting 106

Meeting 105

Meeting 104

Meeting 103

Meeting 102

Meeting 101

Meeting 100

Meeting 99

Meeting 98

Meeting 97

Meeting 96

Meeting 95

Meeting 94

Meeting 93

Meeting 92

 
HomeWard Memorial AwardPlanning Advisory BoardDownloadsConstitution and By-LawsAboutHistoryContact Us

  ← Return to agenda

MeetingACGS Committee Meeting 110 - Auburn, Maine - October 2012
Agenda Location9 SUBCOMMITTEE B – MISSILES AND SPACE
9.4 Status of the SLS program at NASA/Marshall
TitleStatus of the SLS program at NASA/Marshall
PresenterJeb Orr
AffiliationSAIC
Available Downloads*presentation
*Downloads are available to members who are logged in and either Active or attended this meeting.
AbstractA robust and flexible autopilot architecture for NASA’s Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of an integrated launch vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle’s bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme with spectral feedback.



Copyright © 2024 | Question? webmaster@acgsc.org