Aerospace Control and Guidance Systems Committee

Announcements


You must first log in to access prior meeting presentations, register for a meeting, or nominate some for the Ward Award.


If you do not have a login account, or cannot remember the email address associated with your account, please click on the Application Form link below.

 
 

Login

 

E-mail: 

 

Password: 


Forgot your password?

Application Form


 

Site Search

Search our site:
 
 

Upcoming Events


Register for Meeting 133
(please log in first)

 
 

Photos


Meeting Highlights New!

Subcommittee S

 
 

Prior Meetings

Abstracts may be viewed by anyone. Presentations are only available to active members who have logged in.

Meeting 133
(coming soon)

Meeting 132
(coming soon)

Meeting 131

Meeting 130

Meeting 129

Meeting 128

Meeting 127

Meeting 126

Meeting 125

Meeting 124

Meeting 123

Meeting 122

Meeting 121

Meeting 120

Meeting 119

Meeting 118

Meeting 117

Meeting 116

Meeting 115

Meeting 114

Meeting 113

Meeting 112

Meeting 111

Meeting 110

Meeting 109

Meeting 108

Meeting 107

Meeting 106

Meeting 105

Meeting 104

Meeting 103

Meeting 102

Meeting 101

Meeting 100

Meeting 99

Meeting 98

Meeting 97

Meeting 96

Meeting 95

Meeting 94

Meeting 93

Meeting 92

 
HomeWard Memorial AwardPlanning Advisory BoardDownloadsConstitution and By-LawsAboutHistoryContact Us

  ← Return to agenda

MeetingACGS Committee Meeting 122 - Savannah, GA - October 2018
Agenda Location5 8th Annual Dave Ward Memorial Lecture
5.1 Probabilistic Methods for Collaborative Guidance, Estimation And Control in Human-Autonomous Vehicle Teams
TitleProbabilistic Methods for Collaborative Guidance, Estimation And Control in Human-Autonomous Vehicle Teams
PresenterNasir Ahmed
AffiliationUniversity of Colorado
Available Downloads*presentation
*Downloads are available to members who are logged in and either Active or attended this meeting.
AbstractThe age of autonomous vehicles has arrived. Yet, as products of imperfect human engineering designed to make decisions in an uncertain world, the promise of “set-it-and-forget-it” autonomy is still quite far off: autonomous systems will never operate out of the box “exactly right”. For sufficiently rich tasks that constantly push the technological cutting edge, they will encounter unexpected situations that require reasoning beyond their designed/immediate capabilities. As such, an intelligent autonomous system must be able to independently gather, process, and act on imperfect information – and be cognizant of what it can and cannot accomplish, and know when and how to seek help. As teammates, intelligent autonomous vehicles should also be able to communicate with human users to leverage their complementary abilities and improve decision making under uncertainty. Human-machine interaction is thus a key component of autonomous system design, and must naturally connect to existing perception, planning, learning, and reasoning algorithms that enable autonomy.
This talk will present novel Bayesian approaches to collaborative human-robot reasoning under uncertainty that can be exploited from the outset in autonomous system design. The talk will focus on probabilistic modeling, inference, and optimization techniques for augmenting autonomous optimal state estimation and planning algorithms with “plug-and-play human sensors”, connected via user-friendly semantic natural language chat and free-form map sketching interfaces. Results from collaborative human-robot teaming applications for target search and tracking applications show that these techniques allow human-machine teams to gracefully “cut knots and fill in gaps” for challenging problems– without undermining individual agent roles or ignoring their limitations.



Copyright © 2024 | Question? webmaster@acgsc.org