Aerospace Control and Guidance Systems Committee

Announcements


You must first log in to access prior meeting presentations, register for a meeting, or nominate some for the Ward Award.


If you do not have a login account, or cannot remember the email address associated with your account, please click on the Application Form link below.

 
 

Login

 

E-mail: 

 

Password: 


Forgot your password?

Application Form


 

Site Search

Search our site:
 
 

Upcoming Events


Register for Meeting 134
(Coming Soon!)

 
 

Photos


Meeting Highlights New!

Subcommittee S

 
 

Prior Meetings

Abstracts may be viewed by anyone. Presentations are only available to active members who have logged in.

Meeting 133

Meeting 132
(coming soon)

Meeting 131

Meeting 130

Meeting 129

Meeting 128

Meeting 127

Meeting 126

Meeting 125

Meeting 124

Meeting 123

Meeting 122

Meeting 121

Meeting 120

Meeting 119

Meeting 118

Meeting 117

Meeting 116

Meeting 115

Meeting 114

Meeting 113

Meeting 112

Meeting 111

Meeting 110

Meeting 109

Meeting 108

Meeting 107

Meeting 106

Meeting 105

Meeting 104

Meeting 103

Meeting 102

Meeting 101

Meeting 100

Meeting 99

Meeting 98

Meeting 97

Meeting 96

Meeting 95

Meeting 94

Meeting 93

Meeting 92

 
HomeWard Memorial AwardPlanning Advisory BoardDownloadsConstitution and By-LawsAboutHistoryContact Us

  ← Return to agenda

MeetingACGS Committee Meeting 133 - Asheville, NC - November 2024
Agenda Location6 SUBCOMMITTEE B – MISSILES AND SPACE
6.3 Reinforcement Learning Control of Hypersonic Vehicles and Performance Evaluations
TitleReinforcement Learning Control of Hypersonic Vehicles and Performance Evaluations
PresenterBrent Wallace
AffiliationRaytheon
Available Downloads*presentation
*Downloads are available to members who are logged in and either Active or attended this meeting.
AbstractThis work presents a new framework for model-based continuous-time reinforcement learning (CT-RL) control of hypersonic vehicles (HSVs). The predominant classes of CT-RL methods for general nonlinear systems in adaptive dynamic programming (ADP) and deep RL tend to either present substantial theoretical results but lack practical synthesis capability (ADP), or show empirical promise without offering theoretical guarantees (deep RL). Meanwhile, RL control frameworks developed directly for HSVs tend to require a simplified model and complicated control structure, and they lack the substantial numerical evaluations essential for real-world flight implementation. To directly address these challenges, we propose a new decentralized excitable integral reinforcement learning (dEIRL) framework within which the reference input-based exploration improves persistence of excitation (PE). Together with new insights on prescaling and established decentralized control structure for HSVs, we demonstrate the resulting controller for significant performance improvement over classical LQR and feedback linearization methods. Additionally, we provide convergence, optimality, and closed-loop stability guarantees of the proposed method. We demonstrate these performance guarantees over a set of substantial and systematic numerical evaluations on an unstable, nonminimum phase HSV model subject to varying modeling errors and initial conditions.



Copyright © 2025 | Question? webmaster@acgsc.org