Aerospace Control and Guidance Systems Committee

Announcements


You must first log in to access prior meeting presentations, register for a meeting, or nominate some for the Ward Award.


If you do not have a login account, or cannot remember the email address associated with your account, please click on the Application Form link below.

 
 

Login

 

E-mail: 

 

Password: 


Forgot your password?

Application Form


 

Site Search

Search our site:
 
 

Upcoming Events


Register for Meeting 133
(Coming Soon!)

 
 

Photos


Meeting Highlights New!

Subcommittee S

 
 

Prior Meetings

Abstracts may be viewed by anyone. Presentations are only available to active members who have logged in.

Meeting 132
(coming soon)

Meeting 131

Meeting 130

Meeting 129

Meeting 128

Meeting 127

Meeting 126

Meeting 125

Meeting 124

Meeting 123

Meeting 122

Meeting 121

Meeting 120

Meeting 119

Meeting 118

Meeting 117

Meeting 116

Meeting 115

Meeting 114

Meeting 113

Meeting 112

Meeting 111

Meeting 110

Meeting 109

Meeting 108

Meeting 107

Meeting 106

Meeting 105

Meeting 104

Meeting 103

Meeting 102

Meeting 101

Meeting 100

Meeting 99

Meeting 98

Meeting 97

Meeting 96

Meeting 95

Meeting 94

Meeting 93

Meeting 92

 
HomeWard Memorial AwardPlanning Advisory BoardDownloadsConstitution and By-LawsAboutHistoryContact Us

  ← Return to agenda

MeetingACGS Committee Meeting 119 - Fairborn, OH - March 2017
Agenda Location6 SUBCOMMITTEE A – AERONAUTIC AND SURFACE VEHICLES
6.3 Aeroservoelastic Modeling of Body Freedom Flutter for Control System Design
TitleAeroservoelastic Modeling of Body Freedom Flutter for Control System Design
PresenterJeffrey Ouellette
AffiliationNASA Armstrong
Available Downloads*presentation
*Downloads are available to members who are logged in and either Active or attended this meeting.
AbstractOne of the most severe forms of coupling between aeroelasticity and flight dynamics is an instability called body freedom flutter. The existing tools often assume relatively weak coupling, and are therefore unable to accurately model body freedom flutter. Because the existing tools were developed from traditional flutter analysis models, inconsistencies in the final models are not compatible with control system design tools. To resolve these issues, a number of small, but significant changes have been made to the existing approaches. A frequency domain transformation is used with the unsteady aerodynamics to ensure a more physically consistent stability axis rational function approximation of the unsteady aerodynamic model. The aerodynamic model is augmented with additional terms to account for limitations of the baseline unsteady aerodynamic model and to account for the gravity forces. An assumed modes method is used for the structural model to ensure a consistent definition of the aircraft states across the flight envelope. The X-56A stiff wing flight-test data were used to validate the current modeling approach. The flight-test data does not show body-freedom flutter, but does show coupling between the flight dynamics and the aeroelastic dynamics and the effects of the fuel weight.



Copyright © 2024 | Question? webmaster@acgsc.org